반응형
[딥러닝] Preprocess 준비
IT/AI2022. 9. 14. 11:20[딥러닝] Preprocess 준비

로컬 데이터를 불러와 전처리시 필요한 내용입니다. Load Packages import os from glob import glob import numpy as np import tensorflow as tf from PIL import Image import matplotlib.pyplot as plt %matplotlib inline # 현재 경로를 알려줍니다. os.getcwd() # 경로를 넣으면 경로의 파일명만 목록 형식으로 보여줍니다. os.listdir() os.listdir('dataset/mnist_png/training/') # 경로가 포함된 모든 파일들을 목록 형식으로 보여줍니다. # 원하는 포맷의 파일만을 가져올 수 있습니다.(png, txt 등) glob('dataset/mnist..

[딥러닝] 교육자료
IT/AI2022. 9. 14. 11:16[딥러닝] 교육자료

딥러닝 교육자료 딥러닝을 배우기 위한 강의 사이트와 책을 정리하였습니다. 교육 사이트 프로그래머스 - https://programmers.co.kr/ 에드윗 - https://www.edwith.org/ 입문 강의 파이썬 입문 - https://programmers.co.kr/learn/courses/2 딥러닝 입문(Tensorflow) - https://www.edwith.org/others26 입문 블로그 딥러닝 입문(Keras) - https://tykimos.github.io/lecture/ 딥러닝 책 밑바닥부터 시작하는 딥러닝(기초) DeepLearningBook(심화) 머신러닝 책 핸즈온 머신러닝(심화) PRML(심화)

[PyTorch] Evaluating 및 Predicting
IT/AI2022. 9. 13. 16:16[PyTorch] Evaluating 및 Predicting

이전 블로그를 이어서 진행을 합니다. Evaluation model.train() 모드로 변한 것 처럼 평가할 때는 model.eval() 으로 설정합니다. # Test mode # batch norm이나 dropout 등을 train mode 변환 model.eval() # Out Net( (conv1): Conv2d(1, 20, kernel_size=(5, 5), stride=(1, 1)) (conv2): Conv2d(20, 50, kernel_size=(5, 5), stride=(1, 1)) (fc1): Linear(in_features=800, out_features=500, bias=True) (fc2): Linear(in_features=500, out_features=10, bias=True..

[PyTorch] Optimizer 및 Training
IT/AI2022. 9. 13. 16:03[PyTorch] Optimizer 및 Training

Optimization & Training https://github.com/pytorch/examples/tree/master/mnist Load Packages import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import numpy as np no_cuda = False # cuda를 사용할지 안할지 use_cuda = not no_cuda and torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") => devic..

[PyTorch] 각 Layer별 역할 및 파라미터
IT/AI2022. 9. 13. 14:10[PyTorch] 각 Layer별 역할 및 파라미터

PyTorch Layer 이해하기 Load Packages import torch from torchvision import datasets, transforms import numpy as np import matplotlib.pyplot as plt %matplotlib inline 예제 불러오기 train_loader = torch.utils.data.DataLoader( datasets.MNIST('dataset', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() ])), batch_size=1) image, label = next(iter(train_loader)) image.shape, label.s..

[PyTorch] 데이터 불러오기
IT/AI2022. 9. 13. 13:18[PyTorch] 데이터 불러오기

PyTorch Data Preprocess import torch from torchvision import datasets, transforms Import Error ImportError: cannot import name 'PILLOW_VERSION' from 'PIL' pillow 버전이 7.0.0 이상 일경우 Import 에러 나는 경우가 있습니다. 아래 처럼 pillow 버전을 내려주면 해결이 됩니다. $ pip install pillow==6.2.2 Data Loader 부르기 Pytorch는 DataLoader를 불러 model에 넣습니다. batch_size = 32 train_loader = torch.utils.data.DataLoader( datasets.MNIST('dataset/..

TensorFlow 2.0과 PyTorch 비교
IT/AI2022. 9. 13. 11:31TensorFlow 2.0과 PyTorch 비교

TensorFlow 2.0 import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras import datasets Hyperparameter batch_size = 64 learning_rate = 0.001 dropout_rate = 0.7 input_shape = (28, 28, 1) num_classes = 10 Preprocess (train_x, train_y), (test_x, test_y) = datasets.mnist.load_data() train_x = train_x[..., tf.newaxis] test_x = test_x[..., tf.newaxis] train_x = train_x / 255. ..

[PyTorch] 기초 사용법
IT/AI2022. 9. 10. 22:19[PyTorch] 기초 사용법

Load Packages import numpy as np import torch Basic PyTorch 기초 사용법 nums = torch.arange(9) nums.shape nums.numpy() nums.reshape(3, 3) randoms = torch.rand((3, 3)) zeros = torch.zeros((3, 3)) ones = torch.ones((3, 3)) torch.zeros_like(ones) Operations PyTorch로 수학연산 하기 nums * 3 nums = nums.reshape((3, 3)) nums + nums result = torch.add(nums, 10) result.numpy() # Out array([[10, 11, 12], [13, 14, 15..

[TensorFlow 2.0] Evaluating & Prediction
IT/AI2022. 9. 10. 21:44[TensorFlow 2.0] Evaluating & Prediction

Load Packages import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras import datasets Build Model input_shape = (28, 28, 1) num_classes = 10 learning_rate = 0.001 inputs = layers.Input(input_shape, dtype=tf.float64) net = layers.Conv2D(32, (3, 3), padding='SAME')(inputs) net = layers.Activation('relu')(net) net = layers.Conv2D(32, (3, 3), padding='SAME')(net) net = laye..

[TensorFlow 2.0] Optimizer 및 Training (Expert)
IT/AI2022. 9. 8. 10:18[TensorFlow 2.0] Optimizer 및 Training (Expert)

TensorFlow 공식 홈페이지에서 설명하는 Expert 버전을 사용해봅니다. Load Packages import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras import datasets 학습 과정 돌아보기 Build Model input_shape = (28, 28, 1) num_classes = 10 inputs = layers.Input(input_shape, dtype=tf.float64) net = layers.Conv2D(32, (3, 3), padding='SAME')(inputs) net = layers.Activation('relu')(net) net = layers.Conv2D(32, (3, 3..

반응형
image